4,087 research outputs found

    Multivariate time-space harmonic polynomials: a symbolic approach

    Get PDF
    By means of a symbolic method, in this paper we introduce a new family of multivariate polynomials such that multivariate L\'evy processes can be dealt with as they were martingales. In the univariate case, this family of polynomials is known as time-space harmonic polynomials. Then, simple closed-form expressions of some multivariate classical families of polynomials are given. The main advantage of this symbolic representation is the plainness of the setting which reduces to few fundamental statements but also of its implementation in any symbolic software. The role played by cumulants is emphasized within the generalized Hermite polynomials. The new class of multivariate L\'evy-Sheffer systems is introduced.Comment: In pres

    On some applications of a symbolic representation of non-centered L\'evy processes

    Full text link
    By using a symbolic technique known in the literature as the classical umbral calculus, we characterize two classes of polynomials related to L\'evy processes: the Kailath-Segall and the time-space harmonic polynomials. We provide the Kailath-Segall formula in terms of cumulants and we recover simple closed-forms for several families of polynomials with respect to not centered L\'evy processes, such as the Hermite polynomials with the Brownian motion, the Poisson-Charlier polynomials with the Poisson processes, the actuarial polynomials with the Gamma processes, the first kind Meixner polynomials with the Pascal processes, the Bernoulli, Euler and Krawtchuk polynomials with suitable random walks

    On the computation of classical, boolean and free cumulants

    Full text link
    This paper introduces a simple and computationally efficient algorithm for conversion formulae between moments and cumulants. The algorithm provides just one formula for classical, boolean and free cumulants. This is realized by using a suitable polynomial representation of Abel polynomials. The algorithm relies on the classical umbral calculus, a symbolic language introduced by Rota and Taylor in 1994, that is particularly suited to be implemented by using software for symbolic computations. Here we give a MAPLE procedure. Comparisons with existing procedures, especially for conversions between moments and free cumulants, as well as examples of applications to some well-known distributions (classical and free) end the paper.Comment: 14 pages. in press, Applied Mathematics and Computatio

    El Pla de l'Estany

    Get PDF

    L'Institut d'Estudis Catalans, a Banyoles

    Get PDF

    Ciutat i territori: una aproximaciĂł al futur

    Get PDF

    Fam, guerra i pesta a la plana de Vic. 1374-1376

    Get PDF
    • …
    corecore